Realizzare un Voltmetro [0-5Volt] con Display a 7 Segmenti

Obiettivo: Realizzare un dispositivo per misurare tensioni nel range 0.5 V utilizzando il microcontrollore Arduino ed il display a sette segmenti.
Un progetto realizzato dagli alunni della classe 3AUT dell’Istituto Tecnico Industriale “Enrico Mattei” di Urbino:
– Amadori Federico
– Fucili Elia

Componenti elettronici:

  • Arduino UNO
  • Breadboard
  • 14 Resistenze da 100 Ohm per I display a sette segmenti
  • 2 Display a 7 Segmenti

Pre-requisiti:


1..2..3.. Il Display a 7 Segmenti



Le Funzioni digitalWrite, digitalRead, analogWrite e analogRead


TeoriaEffettuare la misura di una tensione compresa nel range 0-5 V, utilizzando il controllore Arduino, è relativamente semplice. Per effettuare questa misura, basta collegare l’elemento di cui vogliamo analizzare la tensione ad un ingresso analogico (A0-A5) e utilizzare l’istruzione analogRead nell’apposito sketch.
A tale fine è importante ribadire che l’ingresso analogico compreso nel range 0-5V viene mappato utilizzato la funzione analogRead(A0) nel range 0-1023, pertanto è indispensabile utilizzare una corrispettiva funzione di conversione basta sulla seguente proporzione:

ValoreAnalogRead : 1023 = ValoreTensione : 5 

In conclusione, il valore di tensione può essere semplicemente ottenuto dividendo per 1023 e moltiplicando per 5 il valore letto utilizzando la funzione analogRead(A0).

Tale valore può essere poi visualizzato su differenti tipi di display: monitor del computer, display LCD e display a 7 segmenti. Nell’esempio in questione vengono utilizzati due display a 7 segmenti (uno per la parte intera ed uno per la parte decimale) al fine di visualizzare la tensione misurata.

Collegamento Circuitale:

Collegamento Circuitale

Codice:

Attraverso l’utilizzo di due display a sette segmenti è possibile visualizzare la tensione prodotta dalla “patata”. Nel caso specifico viene utilizzata una patata come generatore di tensione per verificare che il dispositivo fornisca una valutazione corretta della tensione misurata. Delle funzioni specifiche (e.g., zeroI, unoI, zeroD, unoD, etc) vengono utilizzate per visualizzare i vari numeri nei due differenti display.



Tinkercad




PersonalizzazioniE’ possibile utilizzare altre tipologie di display per visualizzare la tensione misurata.





Misura di Temperatura mediante TMP36 [Tinkercad]

Obiettivo: Realizzare un controllo di temperatura mediante il dispositivo TMP36. Il TMP36 è il sensore di temperatura presente sul simulatore tinkercad.

Componenti elettronici:

  • Arduino UNO
  • Breadboard
  • TMP36

TeoriaIl componente elettronico TMP36 è un dispositivo integrato ad alta precisione utilizzato per misurare la temperatura ambientale.
Dato il basso costo e l’ampia scala di valori ammissibili (ovvero da -40°C fino a 125°C) questi dispositivi sono particolarmente diffusi. E’ inoltre importante considerare che non è necessaria nessuna operazione calibrazione per ottenere valori di accuratezza pari a ±1°C ad una temperatura di circa +25°C e ±2°C nel range di temperature −40°C to +125°C.

Questo dispositivo è caratterizzato da tre differenti pin ed un corpo semi-cilindrico. Guardando il lato piatto del dispositivo, il pin di sinistra è l’alimentazione (5V), il pin di destra la massa (GND), mentre sul pin centrale viene generata una tensione funzione della temperatura. La temperatura può essere pertanto misurata attraverso una lettura analogica sul pin centrale effettuata mediante il controllore Arduino.

TMP36 Package

Come riportato in precedenza è possibile utilizzare un pin di input analogico per ottenere il valore di temperatura mediante l’istruzione di analogRead. Nel caso specifico, osservando il grafico che riporta la caratteristica tensione/temperatura (per il TMP36 la linea è evidenziata in rosso) per una tensione di uscita di 0.5V il sensore rileva la temperatura di 0°C. Pertanto valori di tensione inferiori a 0.5V indicano una temperatura sotto lo zero, mentre valori di tensione superiori a 0.5V indicano una temperatura positiva. Inoltre, è importante considerare che “una variazione di grado corrisponde ad una variazione di tensione di 10mV”. Quindi, se sul pin di input analogico sono presenti 550mV significa che il sensore sta rilevando una temperatura di 5°C (550mV – 500mV = 50 mV variazione di 5°C).

Caratteristica tensione corrente

Collegamento Circuitale:

Viene in seguito riportato lo schema elettrico utilizzato per valutare la temperatura mediante il dispositivo elettronico TMP36

Collegamento Circuitale

Codice:

La temperatura viene determinata attraverso una lettura analogica ed una opportuna scalatura.
Nel dettaglio, la tensione prodotta dal componente TMP36 viene letta utilizzando il pin analogico A0 e mappata in un intervallo 0-1023. Considerando che alla temperatura di 0 gradi la tensione misurata è pari a 0.5V e che per ogni grado percepito si ha un incremento di tensione di 10mV è opportuno riportare il valore letto attraverso la funzione analogRead in mV ed eseguire un’opportuna scalatura. Pertanto se il valore letto mediante l’istruzione di analogRead è memorizzato in una variabile denominata valTMP la temperatura può essere ottenuta mediante la seguente formula:

temperatura = (((valTMP5.0)/1023.0)-0.5)*100



Tinkercad



Personalizzazioni:

E’ possibile modificare il circuito aggiungendo una ventola che si accende in modo automatico superata una determinata temperatura.




Controllo di Temperatura mediante LM35

Obiettivo: Realizzare un controllo di temperatura mediante il dispositivo LM35.



Componenti elettronici:

  • Arduino UNO
  • Breadboard
  • LM35

TeoriaIl componente elettronico LM35 è un dispositivo integrato ad alta precisione utilizzato per misurare la temperatura ambientale.
Dato il basso costo e l’ampia scala di valori ammissibili (ovvero da -55°C fino a 150°C) questi dispositivi sono particolarmente diffusi. E’ inoltre importante considerare che e nessun tipo di calibrazione esterna è richiesta.

Estratto Datasheet LM35

Questo dispositivo è caratterizzato da tre differenti pin ed un corpo semi-cilindrico. Guardando il lato piatto del dispositivo, il pin di sinistra è l’alimentazione (5V), il pin di destra la massa (GND), mentre sul pin centrale viene generata una tensione funzione della temperatura (10mV per ogni grado sopra lo zero). La temperatura può essere pertanto misurata attraverso una lettura analogica sul pin centrale effettuata mediante il controllore Arduino.

LM35 Package

Collegamento Circuitale:

Viene in seguito riportato lo schema elettrico utilizzato per valutare la temperatura mediante il dispositivo elettronico LM35

Collegamento Circuitale

Codice:

La temperatura viene determinata attraverso una lettura analogica ed una opportuna scalatura.
Nel dettaglio, la tensione prodotta dal componente LM35 viene letta utilizzando il pin analogico A0 e mappata in un intervallo 0-1023. Considerando che per ogni grado percepito si ha un incremento di tensione di 10mV è opportuno riportare il valore letto attraverso la funzione analogRead in mV. Questa operazione può essere svolta dividendo il valore letto per 1023 e moltiplicando il risultato per 5000. I gradi sono infine ottenuti dividendo il risultato per 10.



Personalizzazioni:

E’ possibile modificare il circuito aggiungendo una ventola che si accende in modo automatico superata una determinata temperatura.




Le Funzioni digitalWrite, digitalRead, analogWrite e analogRead

Obiettivo: Imparare ad utilizzare le principali funzioni di Arduino



Arduino Porte (Input, Output, Digitali, Analogici)

Teoria:

Le principali funzioni utilizzate da Arduino per comunicare con il mondo esterno sono quattro e si dividono in base alla tipologia di azione:

  • Lettura: utilizzate per acquisire i dati dai differenti sensori (luminosità, temperatura, umidità, etc)
  • Scrittura: utilizzate per comandare i differenti attuatori (motori, buzzer, display, etc)

ed in base alla tipologia di segnale trattato:

  • Digitale: utilizzate per trattare segnali digitali che possono assumere solamente valori logici (i.e., LOW e HIGH)
  • Analogico: utilizzate per trattare segnali analogici con valori compresi tra 0 e 5V.

Nello specifico queste quattro funzioni sono così definite:

Codice:

  • digitalWrite: Funzione utilizzata per comandare attuatori mediante una logica LOW/HIGH come ad esempio motori, led o buzzer. Questa funzione prevede l’impiego di due parametri di input: il PIN (0-13) ed il VALORE (LOW/HIGH)

digitalWrite(pin, valore);



  • analogWrite: Funzione utilizzata per comandare attuatori mediante una logica analogica (valori compresi tra 0V e 5V) come ad esempio motori o led. Questa funzione prevede l’impiego di due parametri di input: il PIN (0-13) ed il VALORE (0-255). Nel caso specifico il valore 0 corrisponde a 0V mentre 255 a 5V. Per tutti gli altri VALORI si può attuare la proporzione lineare. (Ad esempio volendo generare un riferimento di tensione pari a 3Volt il VALORE di input può essere così calcolato: (3/5)*255. E’ importante considerare che i valori di tensione non sono “realmente” analogici ma generati attraverso la tecnica PWM. Inoltre, l’istruzione analogWrite può essere utilizzata solamente su alcuni pin digitali di output: i pin PWM (3,5,6,9,10,11).

analogWrite(pin, valore);



  • digitalRead: Funzione utilizzata per leggere dati da sensori basati su una logica LOW/HIGH come ad esempio i pulsanti. Questa funzione prevede l’impiego di un parametro di input: il PIN (0-13) ed un parametro di output: il VALORE (LOW/HIGH) che viene restituito dalla funzione.

valore= digitalRead(pin);



  • analogRead: Funzione utilizzata per leggere dati da sensori di tipo analogico (valori compresi tra 0V e 5V) come ad esempio fotoresistenze, sensori di temperatura, umidità etc. Questa funzione prevede l’impiego di un parametro di input: il PIN (A0-A5) ed un parametro di output: il VALORE (0-1023). Nel caso specifico il valore 0 corrisponde a 0V mentre 1023 a 5V. Per tutti gli altri VALORI si può attuare la proporzione lineare. (Ad esempio se viene letto il VALORE 512, la tensione di riferimento può essere così calcolata: (512/1023)*5.

valore = analogRead(pin);



Quiz


.wq-quiz-1080 { --wq-question-width: 100%; --wq-question-color: #009cff; --wq-question-height: auto; --wq-bar-color: #00c479; --wq-font-color: #444; --wq-background-color: #f2f2f2; }

A che valore di tensione corrisponde l'intero 818 letto attraverso la funzione analogRead

Correct! Wrong!

(818/1023)*4 = 1V

A che valore di tensione corrisponde l'intero 204 letto attraverso la funzione analogRead

Correct! Wrong!

(204/1023)*5 = 1V

A che valore di tensione corrisponde l'intero 511 letto attraverso la funzione analogRead

Correct! Wrong!

(511/1023)*5 = 2.5V

A che valore di tensione corrisponde l'intero 255 generato utilizzando la funzione analogWrite

Correct! Wrong!

(255/255)*5 = 5V

A che valore di tensione corrisponde l'intero 100 generato utilizzando la funzione analogWrite

Correct! Wrong!

(100/255)*5 = 1.96V

La funzione Valore = digitalWrite(11) è corretta?

Correct! Wrong!

La funzione digitalWrite non ha tipi di ritorno

La funzione digitalWrite(11,HIGH) è corretta?

Correct! Wrong!

La funzione analogWrite(11,1023) è corretta?

Correct! Wrong!

Il valore massimo di tensione per la funzione digitalWrite è pari a 255







Crepuscolare [Avanzato] (Smart Lamp)

Obiettivo: Accensione automatica di quattro LED al diminuire dell’intensità di luce rilevata.



Componenti elettronici:

  • Arduino UNO
  • Breadboard
  • 4 Led
  • 1 Foto-resistenza
  • 4 Resistenze (100Ohm) per Led
  • 1 Resistenza (2.2kOhm) per Foto-resistenza

TeoriaLa foto resistenza è un componente elettronico la cui resistenza è inversamente proporzionale alla quantità di intensità luminosa che lo colpisce. Questo significa che la corrente (inversamente proporzionale alla resistenza) aumenta all’aumentare dell’intensità luminosa.
A seguire, viene riportato la caratteristica Ohm/Lux di una fotoresistenza tipicamente impiegata in applicazioni realizzate mediante Arduino.

Datasheet Fotoresistenza

Nel caso specifico, è importante ricordare che Arduino non può rilevare né variazioni di resistenza né variazioni di corrente. Il microcontrollore può infatti analizzare solamente valori di tensione. Per questo motivo, l’utilizzo di una resistenza è indispensabile al fine di collegare correttamente la fotoresistenza ad Arduino. Nel dettaglio, il circuito previsto per trasformare la variazione di resistenza in una variazione di tensione è il partitore di tensione.

Partitore di Tensione e Fotoresistenza

Nel circuito presentato, la variazione di luminosità produce una variazione del valore della fotoresistenza. Di conseguenza anche il valore della corrente risulta funzione dell’intensità luminosa e di conseguenza anche il valore di tensione in ingresso ad Arduino. Nel dettaglio:

  • Un incremento della luminosità porta ad un decremento della tensione.
  • Un decremento della luminosità porta ad un incremento della tensione.
    • se il pulsante viene premuto la tensione in ingresso ad Arduino è pari a 0.
    • se il pulsante non viene premuto la tensione in ingresso ad Arduino è pari a Vcc (5V)
  • Resistenza di Pull Down:
    • se il pulsante viene premuto la tensione in ingresso ad Arduino è pari a Vcc (5V).
    • se il pulsante non viene premuto la tensione in ingresso ad Arduino è pari a 0.

Attraverso l’utilizzo del comando analogRead è possibile leggere la tensione su uno specifico pin analogico (A0-A5) di Arduino. La funzione analogRead restituisce un valore compreso tra 0 e 1023 a seconda della tensione letta dal microcontrollore.
A titolo di esempio, se il valore di tensione letto utilizzando la funzione analogRead sul pin A0 di Arduino risulta pari a 613. Il valore di tensione può essere facilmente calcolato:

valoreTensioneAnalogico = 613/1023*5 = 3V

dove:

  • Il valore analogico di tensione letto utilizzando l’istruzione analogRead è pari a 613
  • Il valore di tensione massimo che può essere letto dalla funzione analogRead è pari a 1023
  • La tensione massima in uscita ad Arduino è pari a 5V

Tale valore può essere facilmente utilizzato per controllare uno o più led mediante l’istruzione condizionale IF.

Collegamento Circuitale:

Collegamento Circuitale

Codice:

A seguire viene riportata la schematizzazione mediante flowchart dell’algoritmo utilizzato per realizzare il programma.

Flowchart

Codice:


[crayon-673f04768318c337874570/]

P




Crepuscolare (Smart Lamp)

Obiettivo: Accensione automatica di un LED al diminuire dell’intensità di luce rilevata.



Componenti elettronici:

  • Arduino UNO
  • Breadboard
  • 1 Led
  • 1 Foto-resistenza
  • 1 Resistenza (2.2kOhm)

TeoriaLa foto resistenza è un componente elettronico la cui resistenza è inversamente proporzionale alla quantità di intensità luminosa che lo colpisce. Questo significa che la corrente (inversamente proporzionale alla resistenza) aumenta all’aumentare dell’intensità luminosa.
A seguire, viene riportato la caratteristica Ohm/Lux di una fotoresistenza tipicamente impiegata in applicazioni realizzate mediante Arduino.

Datasheet Fotoresistenza

Nel caso specifico, è importante ricordare che Arduino non può rilevare né variazioni di resistenza né variazioni di corrente. Il microcontrollore può infatti analizzare solamente valori di tensione. Per questo motivo, l’utilizzo di una resistenza è indispensabile al fine di collegare correttamente la fotoresistenza ad Arduino. Nel dettaglio, il circuito previsto per trasformare la variazione di resistenza in una variazione di tensione è il partitore di tensione.

Partitore di Tensione e Fotoresistenza

Nel circuito presentato, la variazione di luminosità produce una variazione del valore della fotoresistenza. Di conseguenza anche il valore della corrente risulta funzione dell’intensità luminosa e di conseguenza anche il valore di tensione in ingresso ad Arduino. Nel dettaglio:

  • Un incremento della luminosità porta ad un decremento della tensione.
  • Un decremento della luminosità porta ad un incremento della tensione.

Attraverso l’utilizzo del comando analogRead è possibile leggere la tensione su uno specifico pin analogico (A0-A5) di Arduino. La funzione analogRead restituisce un valore compreso tra 0 e 1023 a seconda della tensione letta dal microcontrollore.
A titolo di esempio, se il valore di tensione letto utilizzando la funzione analogRead sul pin A0 di Arduino risulta pari a 613. Il valore di tensione può essere facilmente calcolato:

valoreTensioneAnalogico = 613/1023*5 = 3V

dove:

  • Il valore analogico di tensione letto utilizzando l’istruzione analogRead è pari a 613
  • Il valore di tensione massimo che può essere letto dalla funzione analogRead è pari a 1023
  • La tensione massima in uscita ad Arduino è pari a 5V

Tale valore può essere facilmente utilizzato per controllare un led mediante l’istruzione condizionale IF.

Collegamento Circuitale:

Collegamento Circuitale

Codice:

A seguire viene riportata la schematizzazione mediante flowchart dell’algoritmo utilizzato per realizzare il programma.

Flowchart


[crayon-673f047685bdc298086621/]

Personalizzazioni:

E’ possibile modificare il circuito aggiungendo altri led. E’ inoltre possibile modificare il codice al fine di realizzare una lampada che accenda un numero differente di led in funzione della luminosità.




Controllo di un LED mediante un Potenziometro

Obiettivo: Controllare un LED utilizzando un potenziometro



Pre-Requisiti


Fading led


Componenti elettronici:

  • Arduino UNO
  • Breadboard
  • 1 Led
  • 1 Resistenza (100 Ohm)
  • 1 Trimmer (4.7KOhm o similari)

TeoriaIn questo articolo si propone l’utilizzo di un potenziometro per regolare in modo manuale la luminosità di un LED. E’ importante considerare che (come riportato nei pre-requisiti) l’impiego della funzione digitalWrite non permette di modulare l’intensità luminosa del LED. Difatti, attraverso l’utilizzo di questa istruzione digitale, il LED può trovarsi solamente in due stati logici LOW (spento) o HIGH (acceso).
Per raggiungere lo scopo prefissato è pertanto necessario l’utilizzo di una differente funzione denominata: analogWrite. Questa funzione permette infatti di modulare l’intensità luminosa del LED fornendo 256 differenti livelli di luminosità. L’istruzione analogWrite permette infatti di emulare un finto segnale analogico attraverso l’impiego della tecnica PWM (Pulse Width Modulation). Solamente sei PIN (quelli contrassegnati dal simbolo tilde ~) possono essere utilizzati per fornire un segnale “analogico”.

Tuttavia è importante considerare che se l’istruzione analogwrite permette di gestire la luminosità del LED, questa funzione non permette di controllare la posizione del potenziometro essendo il potenziometro un dispositivo di input (dato da leggere). Pertanto per la gestione del potenziometro sarà effettuata utilizzando una differente funzione denominata analogRead. Questa funzione permette infatti di leggere un livello di tensione compreso tra 0 e 5 Volt e mapparlo in un intervallo discreto composto da 1024 livelli (0-1023).

Collegamento Circuitale:

Collegamento Circuitale

Codice:






Caratteristiche Hardware

Obiettivo: Conoscere le principali caratteristiche Hardware di Arduino

Principali Componenti Hardware

Teoria:

Arduino UNO è una piattaforma HW dotata di Microcontrollore ATMega328P

  1. MCU Microcontrollore ATmega328P. È un microcontrollore a 8 bit, in formato PDIP a 28 pin. L’MCU è dotata di 3 differenti tipologie di memoria: FLASH 32 KB (che includono anche il bootloader e la memoria programma), SRAM 2 KB (usata per memorizzare le variabili e le costanti del software) ed EEPROM 1KB (utilizzata per memorizzare le configurazioni)
  2. Un totale di 14 pin di input/output digitali programmabili, di cui 6 utilizzabili per fornire in uscita segnali modulati PWM. I pin PWM sono identificabili grazie al carattere tilde presente vicino al pin (3,5,6,9,10,11).
  3. Un totale di 6 pin di input analogici 
  4. Oscillatore a frequenza 16 MHz
  5. Jack per alimentazione esterna (5b: Regolatore di tensione)
  6. Connettore ICSP (In Circuit Serial Programmer) per effettuare la programmazione diretta del microcontrollore. 
  7. Pulsante di Reset
  8. Connettore USB utilizzabile sia per alimentare la scheda che per programmare il microcontrollore 
  9. Dispositivo per la comunicazione 16U2: si occupa della conversione dei dati provenienti dall’USB in dati seriali (e viceversa) adatti per il microcontrollore.


Modalità di alimentazione:


  • Alimentazione da pc con cavo usb (corrente max500mA): Se oltre al cavo usb alimentiamo Arduino anche tramite un connettore o dal pin Vin, verrà bypassata automaticamente l’alimentazione da usb e verrà utilizzata quella esterna.
  • Connettore di alimentazione(corrente max800mA): La tensione nel rangetra 7 e 12 volte viene stabilizzata dall’integrato NCP1117
  • Collegamento diretto al PIN Vin: Anche in questo caso la tensione è stabilizzata. Non è presente però il diodo di protezione non invertire la polarità.
  • Collegamento diretto al PIN 5V: Tensione non stabilizzata. PERICOLO!!!