Arduino Facile

ARDWARE #14 Sintesi di Circuiti Logici – Somma di Prodotti

Obiettivo: Imparare a sintetizzare il comportamento di un circuito combinatorio partendo da una specifica tabella di verità mediante la somma di prodotti.

Componenti elettronici:

TeoriaUn circuito combinatorio è costituito da una serie di porte logiche opportunamente collegate tra loro con l’obiettivo di implementare una specifica funzione logica. Alcune delle porte logiche più utilizzate nell’ingegneria dell’informazione sono le porte: AND OR e NOT.

Maggiori informazioni in merito a queste porte logiche possono essere reperite nei seguenti link.

ARDWARE #3 Porta Logica NOT 74HC04
ARDWARE #5 Porta Logica OR 74HC32
ARDWARE #4 Porta Logica AND 74HC08

Le principali operazioni associate ad una rete logica sono due:

La tecnica illustrata nel corso di questa lezione per effettuare la sintesi di una rete logica viene denominata Somma di Prodotti e consiste in una procedura algoritmica che può essere facilmente applicata a tutte le differenti tabelle di verità.
Nello specifico, la SOMMA DI PRODOTTI (SoP – Sum of Product) è costituita dalla somma logica dei mintermini associati alle righe della tabella nella quale l’uscita assume valore 1.
Nel dettaglio un mintermine è definito come il prodotto logico delle variabili booleane prese in forma diretta o negata a seconda se assumono valore 1 o 0.
A seguire la tabella dei mintermini.

ABCMintermine
000A B C
001A B C
010A B C
011A B C
100A B C
101A B C
110A B C
111A B C

In analogia alla tabella di verità, è importante considerare che date n variabili di input il numeri di mintermini è pari a 2n.

Esempio:
Al fine di illustrare in dettaglio il processo di somma di prodotti viene riportato un esempio specifico partendo dalla seguente tabella di verità:

ABCY
0
000
0010
0100
0111
1001
1010
1100
1110

1) Si prendono in considerazione solamente le uscite pari ad 1 della tabella di verità, per ogni uscita si prendono i mintermini di riferimento.

Input: 0 1 1 -> Mintermine: A B C

Input: 1 0 0 -> Mintermine: A B C

2) Si sommano i mintermini precedentemente determinati per determinare la funzione logica che implementa la tabella di verità di partenza.

Y: A B C + A B C

3) Si rappresenta la rete logica che implementa la funzione logica precedentemente determinata.

Circuito combinatorio di sintesi

Esercizi di Approfondimento:

Vengono in seguito riportati alcuni esercizi che possono essere facilmente eseguiti al fine di comprendere se i concetti presentati sono stati opportunamente acquisiti. Pertanto si chiede di determinare la rete combinatoria legata alle seguenti tabelle di verità:

ABCY
0
000
0011
0100
0110
1000
1010
1100
1110
ABCY
0
001
0011
0101
0111
1000
1010
1100
1110


PAGINA IN PDF